Как вычислить систему исчисления значений. Арифметические основы цифровой техники

| § 1.1. Системы счисления

Уроки 2 - 5
§ 1.1. Системы счисления

Ключевые слова:

Система счисления
цифра
алфавит
позиционная система счисления
основание
развёрнутая форма записи числа
свёрнутая форма записи числа
двоичная система счисления
восьмеричная система счисления
шестнадцатеричная система счисления

1.1.1. Общие сведения о системах счисления

Система счисления - это знаковая система, в которой приняты определённые правила записи чисел . Знаки, с помощью которых записываются числа (рис. 1.1), называются цифрами , а их совокупность - алфавитом системы счисления .

Рис. 1.1. Знаки, используемые для записи чисел в различных системах счисления

В любой системе счисления цифры служат для обозначения чисел, называемых узловыми; остальные числа (алгоритмические) получаются в результате каких-либо операций из узловых чисел.

Пример 1 . У вавилонян узловыми являлись числа 1, 10, 60; в римской системе счисления узловые числа - это 1, 5, 10, 50, 100, 500 и 1000, обозначаемые соответственно I, V, X, L, С, D, М.

Системы счисления различаются выбором узловых чисел и способами образования алгоритмических чисел. Можно выделить следующие виды систем счисления:

1) унарная система;
2) непозиционные системы;
3) позиционные системы.

Простейшая и самая древняя система - так называемая унарная система счисления . В ней для записи любых чисел используется всего один символ - палочка, узелок, зарубка, камушек. Длина записи числа при таком кодировании прямо связана с его величиной, что роднит этот способ с геометрическим представлением чисел в виде отрезков. Именно унарная система лежит в фундаменте арифметики, и именно она до сих пор вводит первоклассников в мир счёта. Унарную систему ещё называют системой бирок.

Система счисления называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа .

В большинстве непозиционных систем счисления числа образуются путём сложения узловых чисел.

Пример 2 . В древнеегипетской системе счисления числа 1, 2, 3, 4, 10, 13, 40 обозначались соответственно следующим образом:

Те же числа в римской системе счисления обозначаются так: I, II, III, IV, X, XIII, XL. Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.

Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения (позиции) в записи числа . Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Десятичная система записи чисел , которой мы привыкли пользоваться в повседневной жизни, с которой мы знакомы с детства, в которой производим все наши вычисления, - пример позиционной системы счисления . Алфавит десятичной системы составляют цифры О, 1, 2, 3, 4, 5, 6, 7, 8, 9. Алгоритмические числа образуются в ней следующим образом: значения цифр умножаются на «веса» соответствующих разрядов, и все полученные значения складываются. Это отчётливо прослеживается в числительных русского языка, например: «три-ста пять-десят семь ».

Основанием позиционной системы счисления может служить любое натуральное число q > 1 . Алфавитом произвольной позиционной системы счисления с основанием q служат числа О, 1, ..., q-1, каждое из которых может быть записано с помощью одного уникального символа; младшей цифрой всегда является О.

Основные достоинства любой позиционной системы счисления - простота выполнения арифметических операций и ограниченное количество символов, необходимых для записи любых чисел.

Здесь:

А - число;




q i - «вес» i-то разряда.

Запись числа по формуле (1) называется развёрнутой формой записи. Свёрнутой формой записи числа называется его представление в виде 1


Пример 3 . Рассмотрим десятичное число 14351,1. Его свёрнутая форма записи настолько привычна, что мы не замечаем, как в уме переходим к развёрнутой записи, умножая цифры числа на «веса» разрядов и складывая полученные произведения:

1.1.2. Двоичная система счисления

Двоичной системой счисления называется позиционная система счисления с основанием 2. Для записи чисел в двоичной системе счисления используются только две цифры: 0 и 1.

На основании формулы (1) для целых двоичных чисел можно записать:

Например:

Такая форма записи «подсказывает» правило перевода натуральных двоичных чисел в десятичную систему счисления: необходимо вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа.

Получим правило перевода целых десятичных чисел в двоичную систему счисления из формулы (1").

Разделим на 2. Частное будет равно , а остаток будет равен a 0 .

Полученное частное опять разделим на 2, остаток от деления будет равен a 1 .

Если продолжить этот процесс деления, то на n-m шаге получим набор цифр:

которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.

Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 4. Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

Выписывая остатки от деления в направлении, указанном стрелкой, получим: 11 10 = 1011 2 .

Пример 5 . Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:

363 10 = 101101011 2

1.1.3. Восьмеричная система счисления

Восьмеричной системой счисления называется позиционная система счисления с основанием 8 . Для записи чисел в восьмеричной системе счисления используются цифры: 0, 1, 2, 3, 4, 5, 6, 7.

На основании формулы (1) для целого восьмеричного числа можно записать:

Например: 1063 8 = 1 8 3 + 0 8 2 + 6 8 1 + 3 8 0 = 563 10 .

Таким образом, для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в новой системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 6 . Переведём десятичное число 103 в восьмеричную систему счисления.

103 10 = 147 8

1.1.4. Шестнадцатеричная система счисления

Основание: q = 16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F .

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0,..., 9. Для записи цифр с десятичными количественными эквивалентами 10, 11, 12, 13, 14, 15 обычно используются первые пять букв латинского алфавита.

Таким образом, запись 3AF 16 означает:

Пример 7 . Переведём десятичное число 154 в шестнадцатеричную систему счисления.

154 10 = 9А 16

1.1.5. Правило перевода целых десятичных чисел в систему счисления с основанием q

Для перевода целого десятичного числа в систему счисления с основанием g следует:

1) последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, равное нулю;
2) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;
3) составить число в новой системе счисления, записывая его, начиная с последнего полученного остатка.

Представим таблицу соответствия десятичных, двоичных, восьмеричных и шестнадцатеричных чисел от О до 20 10 .

В Единой коллекции цифровых образовательных ресурсов (http://sc.edu.ru/) размещена интерактивная анимация «Преобразование десятичного числа в другую систему счисления» (135050). С её помощью можно понаблюдать за переводом произвольного целого числа от 0 до 512 в позиционную систему счисления, основание которой не превышает 16.

В размещённой там же виртуальной лаборатории «Цифровые весы» (135009) вы сможете освоить ещё один способ перевода целых десятичных чисел в другие системы счисления - метод разностей.

1.1.6. Двоичная арифметика

Арифметика двоичной системы счисления основывается на ис-пользовании следующих таблиц сложения и умножения:

Пример 8 . Таблица двоичного сложения предельно проста. Так как 1 + 1 = 10, то 0 остаётся в младшем разряде, а 1 переносится в старший разряд.

Пример 9 . Операция умножения двоичных чисел выполняется по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Таким образом, в двоичной системе счисления умножение сводится к сдвигам множимого и сложениям.

1.1.7. «Компьютерные» системы счисления

В компьютерной технике используется двоичная система счисления, обеспечивающая ряд преимуществ по сравнению с другими системами счисления:

Двоичные числа представляются в компьютере с помощью достаточно простых технических элементов с двумя устойчивыми состояниями;
представление информации посредством только двух состояний надёжно и помехоустойчиво;
двоичная арифметика наиболее проста;
существует математический аппарат, обеспечивающий логические преобразования двоичных данных.

Обмен информацией между компьютерными устройствами осуществляется путём передачи двоичных кодов. Пользоваться такими кодами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) на некоторых этапах разработки, создания, настройки вычислительных систем заменяют двоичные коды на эквивалентные им величины в восьмеричной или шестнадцатеричной системах счисления. В результате длина исходного слова сокращается в три, четыре раза соответственно. Это делает информацию более удобной для рассмотрения и анализа.

С помощью ресурса «Интерактивный задачник, раздел “Системы счисления”» (128659), размещённого в Единой коллекции цифровых образовательных ресурсов, можно проверить, насколько прочно вы усвоили изученный в этом параграфе материал.

САМОЕ ГЛАВНОЕ

Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Знаки, с помощью которых записываются числа, называются цифрами, а их совокупность - алфавитом системы счисления.

Система счисления называется позиционной, если количествен-ный эквивалент цифры зависит от её положения (позиции) в записи числа. Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Основанием позиционной системы счисления может служить любое натуральное число q > 1.

В позиционной системе счисления с основанием q любое число может быть представлено в виде:

Здесь:

А - число;
q - основание системы счисления;
a i - цифры, принадлежащие алфавиту данной системы счисления;
n - количество целых разрядов числа;
m - количество дробных разрядов числа;
q i - «вес» i-то разряда.

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебнике? Какими слайдами вы могли бы дополнить презентацию?

2. Найдите дополнительную информацию об унарной, позиционных и непозиционных системах счисления. Чем они различаются? Приведите примеры.

3. Цифры каких систем счисления приведены на рис. 1.1?

4. Объясните, почему позиционные системы счисления с основаниями 5, 10, 12 и 20 называют системами счисления анатомического происхождения.

5. Как от свёрнутой формы записи десятичного числа перейти к его развёрнутой форме?

6. Запишите в развёрнутой форме числа:

а) 143,511 10 ;
б) 143511 8 ;
в) 143511 16 ;
г) 1435,11 8

7. Вычислите десятичные эквиваленты следующих чисел:

а) 172 8 ;
б) 2ЕА 16 ;
в) 101010 2 ;
г) 10,1 2 ;
д) 243 6 .

8. Укажите, какое из чисел 110011 2 , 111 4 , 35 8 и 1В 16 является:

а) наибольшим;
б) наименьшим.

9. Какое минимальное основание имеет система счисления, если в ней записаны числа 123, 222, 111, 241? Определите десятичный эквивалент данных чисел в найденной системе счисления.

10. Верны ли следующие равенства?

а) 33 4 = 21 7 ;
б) 33 8 = 21 4 .

11. Найдите основание х системы счисления, если:

а) 14 x = 9 10 ;
б) 2002 x . = 130 10 .

12. Переведите целые числа из десятичной системы счисления в двоичную:

а) 89;
б) 600;
в) 2010.

13. Переведите целые числа из десятичной системы счисления в восьмеричную:

а) 513;
б) 600;
в) 2010.

14. Переведите целые числа из десятичной системы счисления в шестнадцатеричную:

а) 513;
б) 600;
в) 2010.

15. Заполните таблицу, в каждой строке которой одно и то же число должно быть записано в системах счисления с основаниями 2, 8, 10 и 16.

Основные понятия

Система счисления - это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

  • непозиционными (в этих системах значение цифры не зависит от ее позиции - положения в записи числа);
  • позиционными (значение цифры зависит от позиции).

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления - количество различных цифр, используемых в этой системе. Вес разряда - отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

p i = s i ,

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем - запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

Перевод в десятичную систему счисления

По определению веса разряда

p i = s i ,
где i - номер разряда, а s - основание системы счисления.

Тогда, обозначив цифры числа как a i , любое число, записанное в позиционной системе счисления, можем представить в виде:

x = a n s n + a n-1 s n-1 + ... + a 2 s 2 + a 1 s 1 + a 0 s 0 + a -1 s -1 + ...

Например, для системы счисления с основанием 4:

1302.2 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

1302.2 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1 =
= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

  1. пронумеровать разряды исходного числа;
  2. записать сумму, слагаемые которой получаются как произведения очередной цифры на основание системы счисления, возведенное в степень, равную номеру разряда;
  3. выполнить вычисления и записать полученный результат (указав основание новой системы счисления - 10).

Примеры:

Перевод из десятичной системы счисления

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

1302 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 1302 4

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 - это младшая цифра при записи в четверичной системе. Частное же будет равно

(1 ⋅ 4 + 3) ⋅ 4 + 0

Деление его на 4 даст остаток - следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

  1. Выполнить последовательное деление с остатком исходного числа и каждого полученного частного на основание новой системы счисления.
  2. Записать вычисленные остатки, начиная с последнего (т.е. в обратном порядке)

Примеры:

Системы счисления с кратными основаниями

При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 - степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.

Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=24 ) разрядами двоичной (и наоборот) по таблице.

шестнадцатеричная -> двоичная
A 3 2 E
1010 0011 0010 1110
двоичная -> шестнадцатеричная
(00)10 1010 0111 1101
2 A 7 D

Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3)

восьмеричная -> двоичная
5 3 2 1
101 011 010 001
двоичная -> восьмеричная
(0)10 101 001 111 101
2 5 1 7 5

Арифметика

Арифметические операции в позиционной системе с любым основанием производятся по одним и тем же правилам: сложение, вычитарние и умножение «в столбик», а деление - «уголком». Рассмотрим пример выполнения действий сложения и вычитания в двоичной, восьмеричной и шестнадцатеричной системах счисления.

Сложение

Двоичная система:

(перенос)
1 0 0 1 1 0 1 1
1 0 0 1 1 1 0

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0 (номера разрядов)

В нулевом разряде: 1 + 0 = 0

В первом разряде: 1 + 1 = 2. 2 переносится в старший (2-й) разряд, обращаясь в единицу переноса. В первом разряде остается 2 - 2 = 0.

Во втором разряде: 0 + 1 + 1 (перенос) = 2; Переносим в старший разряд,

Продолжая вычисления, получим:

10011011 2 + 1001110 2 = 11101001 2

Восьмеричная система:


(перенос)
3 4 2 6 1

4 4 3 5

4 0 7 1 6
4 3 2 1 0 (номера разрядов)

Выполняем вычисления аналогично двоичной системе, но в старший разряд переносим 8. Получаем:

34261 8 + 4435 8 = 40716 8

Шестнадцатеричная система:



(перенос)

A 3 9 1

8 5 3 4

1 2 8 C 5
4 3 2 1 0 (номера разрядов)

A391 16 + 8534 16 = 128C5 16

Вычитание

Двоичная система:



(перенос)
1 0 0 1 1 0 1 1
1 0 0 1 1 1 0


1 0 0 1 1 0 1
7 6 5 4 3 2 1 0 (номера разрядов)

волов (разрядов). Такой подход используется при передаче, хранении и обработке информации и обычно не связан со смысловым содержанием информации.

1.5.2. Вероятностный подход

В теории информации, информация определяется как снятая неопределенность. Здесь учитывается ценность информации для получателя. Количество информации определяется тем, насколько уменьшится мера неопределенности (энтропия) после получения сообщения или наступления события.

За единицу количества информации (бит) принимается такое количество информации, которое содержит сообщение, уменьшающее информационную неопределенность в 2 раза. В общем случае, количество информации (Н ) содержащееся в сообщении о том, что произошло одно из N равновероятных событий, определяется так:

Группа из 8 битов называется байтом. Если бит - минимальная единица информации, то байт - основная. Существую производные единицы информации:

1 байт = 8 бит;

1 килобайт = 210 байт = 1024 байт;

1 Мегабайт = 220 байт = 1024 килобайт;

1 Гигабайт = 230 байт = 1024 Мегабайт;

1 Терабайт = 240 байт = 1024 Гигабайт.

1.6. Системы счисления, используемые в информатике

Система счисления - это совокупность приемов и правил записи чисел с помощью цифр. Различают непозиционные и позиционные системы счисления.

В непозиционной системе счисления каждый символ имеет свое определенное значение, которое не зависит от положения символа в записи числа. Например, в римской системе счисления

I - 1, V - 5, X - 10, L - 50, C - 100, D - 500, M - 1000. Число 77 записывается LXXVII.

В позиционной системе счисления значение любой цифры в изображении числа зависит от ее положения (позиции) в ряду цифр, изображающих данное число. Например: 77 - 7 единиц и 7 десятков.

Каждая позиционная система счисления имеет строго определенное количество символов (цифр) для обозначения любого числа:

– двоичная - 2: 0 и 1;

десятичная - 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Количество цифр, используемых в позиционной системе счисления для записи чисел, называется основанием системы счисления. Основанием системы счисления может быть любое натуральное число.

Пусть q - основание системы, тогда любое число в системе счисления с основанием q можно представить в виде:

А q = a n q n + a n –1 q n –1 + ... + a 1 q 1 + a 0 q 0 + a –1 q –1 + a –2 q –2 + ... + a –k q–k , (3) где А q - число, записанное в системе счисления с основанием q ,

n + 1 - количество разрядов целой части числа,

а i - цифры числа, причем 0 ≤ а i < q ,

k - количество разрядов в дробной части числа.

В информатике используются только позиционные системы счисления: десятичная, двоичная, восьмеричная, шестнадцатеричная.

1.6.1. Правила перевода чисел из одной системы счисления в другую

Правило 1 . Для перевода целого десятичного числа А в систему счисления с основанием q необходимо число А делить на основание q до получения целого остатка, меньшего q . Полученное частное следует снова делить на q до получения целого остатка, меньшего q , и т.д. до тех пор, пока последнее частное не будет меньше q . Тогда десятичное число А в системе счисления с основанием q следует записать в виде последовательности остатков деления в порядке, обратном их получению, причем старший разряд дает последнее частное.

Правило 2 . Для перевода десятичной дроби в систему счисления с основанием q следует умножить это число на основание q . Целая часть произведения будет первой цифрой числа в системе счисления с основанием q . Затем, отбросив целую часть, снова умножить на основание q и т.д. до тех пор, пока не будет получено требуемое число разрядов в новой системе счисления или пока перевод не закончится.

Правило 3 . Смешанные числа десятичной системы счисления переводятся в два приема: отдельно целая часть по своему правилу и отдельно дробная часть по своему правилу. Затем записывается общий результат, у которого дробная часть отделяется запятой.

Правило 4 . Для перевода числа из системы счисления с основанием q в десятичную систему счисления следует использовать форму записи числа в виде (3).

Правило 5 . Для перевода целого числа из двоичной системы счисления в восьмеричную систему необходимо последовательность двоичных цифр раз-

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ; ; и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

III

VII

VIII

XIII

XVIII

XIX

XXII

XXXIV

XXXIX

XCIX

200

438

649

999

1207

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

001

010

011

100

101

110

111

1000

1001

1010

1011

1100

1101

D http://viagrasstore.net/generic-viagra-soft/

1110

1111

10000

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

1024

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.