По каким основаниям классифицируют химические реакции. Химические реакции


Все химические реакции можно классифицировать по различным признакам:

1. Классификация реакций по изменению кол-ва исходных веществ и продуктов реакции

  • реакции присоединения - из нескольких веществ образуется новое вещество: С + О 2 = СО 2 ;
  • реакции разложения - из одного веществ образуется несколько других: CaCO 3 = CaO + CO 2 ;
  • реакции замещения - в результате реагирования простого и сложного вещества образуются новые сложные и простые вещества: 2Na +2H 2 O = 2NaOH + H 2 ;
  • реакции обмена - реагенты обмениваются составными частями: MgS + 2HCl = MgCl 2 + H 2 S;
  • реакции нейтрализации (являются частным случаем реакций обмена) - исходными веществами реакции выступают кислота и основание, а продуктами - вода и соль: NaOH + HCl = NaCl + H 2 O

2. Классификация реакций по выделению/поглощению энергии

  • экзотермические реакции (с выделением тепла): C + O 2 = CO 2 + Q
  • эндотермические реакции (с поглощением тепла): N 2 + O 2 = 2NO - Q

3. Классификация реакций по наличию катализатора

Катализаторами называют вещества, которые не принимают непосредственного участия в самой реакции, но изменяют скорость ее протекания.

  • каталитические реакции: CO + H 2 O = CO 2 + H (катализатор FeO)
  • некаталитические реакции

4. Классификация реакций по признаку обратимости реакции

  • обратимые реакции - могут самопроизвольно протекать при данных условиях, как в прямом, так и в обратном направлении: N 2 (г) + 3H 2 (г) ↔ 2NH 3 (г)
  • необратимые реакции - протекают только в одном направлении с практически полным превращением исходных веществ в продукты реакции (один из продуктов является газообразным или слабодиссоциирующим веществом): CaCO 3 = CaO + CO 2

5. Классификация реакций по типу частиц

  • молекулярные;
  • ионные;
  • радикальные.

6. Классификация реакций по типу энергетического воздействия

  • термохимические реакции - протекают при повышенной температуре: N 2 + O 2 = 2NO;
  • фотохимические реакции - протекают под воздействием света: H 2 + Cl 2 = 2HCl;
  • электрохимические реакции - протекают под воздействием электрического тока: 2NaCl = 2Na + Cl 2 .

7. Классификация реакций по агрегатному состоянию среды

  • гомогенные реакции - протекают в однородной среде, например, в газообразной или жидкой среде:
    С + O 2 = CO 2
    KOH+HCl = H 2 O+KCl;
  • гетерогенные реакции - протекают на границе раздела двух веществ, находящихся в разных фазах (твердой-газообразной; жидкой-газообразной, твердой-жидкой; жидкой-жидкой; твердой-твердой):
    • CaCO 3 (т) = CaO(т)+CO 2 (г)
    • FeO(т)+CO(г) = Fe(г)+CO 2 (т)
    • Zn(т)+H 2 SO 4 (ж) = H 2 (г)+ZnSO 4 (ж)

Гомогенные и гетерогенные реакции, в свою очередь, подразделяются на простые (в системе протекает только одна реакция, как правило, необратимая) и сложные (в системе протекает одновременно несколько простых реакций).

Виды простых химических реакций:

  • Мономолекулярные реакции: в таких реакциях участвует только один вид молекул исходного вещества:
    I 2 ↔ 2I
  • Бимолекулярные реакции: состоят из одной стадии, в каждом акте участвуют две частицы:
    H 2 +I 2 = 2HI
  • Тримолекулярные реакции: принимают участие в акте одновременно три частицы:
    2NO+H 2 = N 2 O+H 2 O

Виды сложных химических реакций :

  • Параллельные реакции: исходные вещества взаимодействуют одновременно в нескольких различных направлениях;
  • Последовательные реакции: исходные вещества претерпевают изменения, проходя несколько последовательных стадий, образуя промежуточные продукты реакции;
  • Сопряженные реакции: две реакции протекают в одной среде, при этом течение одной реакции зависит от другой, или течение обеих реакций влияют друг на друга.

Любая химическая реакция сопровождается выделением или поглощением тепла (см. Тепловой эффект реакции).

О протекании реакции можно судить по образованию продуктов реакции, исчезновению или изменению исходных веществ: изменение цвета веществ; образованию или исчезновению осадка; выделению или поглощению газа; появлению, исчезновению, изменению запаха; выделению или поглощению тепла и проч.

В заключение следует упомянуть о таком важном нюансе, как об условиях протекания реакции, далеко не все химические реакции протекают, при так называемых, нормальных условиях. В некоторых случаях для взаимодействия веществ требуется высокая температура, давление, определенная кислотность среды, присутствие катализатора и проч.

Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):

С +О 2 = СО 2 + Q

и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):

N 2 +О 2 = 2NО — Q.

Такие реакции относят к термохимическим .

Рассмотрим более подробно каждый из типов реакций.

Классификация по числу и составу реагентов и конечных веществ

1. Реакции соединения

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

t o
4HNO 3 = 2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга :

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена :

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена — реакции нейтрализации :

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .

5. Реакции переноса.

При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:

АВ + ВС = А + В 2 С,

А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .

Например:

2AgCl + SnCl 2 = 2Ag + SnCl 4 ,

H 2 O + 2NO 2 = HNO 2 + HNO 3 .

Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции

H 2 + Cl 2 2HCl.

2. Реакции в растворах

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)

3. Реакции между твердыми веществами

t o
СаО(тв) +SiO 2 (тв) = СаSiO 3 (тв)

Классификация реакций по числу фаз.

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Все многообразие реакций с этой точки зрения можно разделить на два класса:

1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

газожидкофазные реакции

CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).

газотвердофазные реакции

СO 2 (г) + СаО(тв) = СаСO 3 (тв).

жидкотвердофазные реакции

Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).

жидкогазотвердофазные реакции

Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.

Классификация реакций по типу переносимых частиц

1. Протолитические реакции.

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

2. Окислительно-восстановительные реакции.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:

Zn + 2H + → Zn 2 + + H 2 ,

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

3. Лиганднообменные реакции.

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:

Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,

Fe + 5CO = ,

Al(OH) 3 + NaOH = .

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

4. Реакции атомно-молекулярного обмена.

К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.

Обратимые и необратимые химические реакции

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом:

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:

СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:

2КСlО 3 → 2КСl + ЗО 2 ,

или окисление глюкозы кислородом воздуха:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.

Лекция 2.

Химические реакции. Классификация химических реакций.

Окислительно-восстановительные реакции

Вещества, взаимодействуя друг с другом подвергаются различным изменениям и превращениям. Например, уголь, сгорая образует углекислый газ. Бериллий, взаимодействуя с кислородом воздуха превращается в оксид бериллия.

Явления, при которых одни вещества превращаются в другие, отличающихся от исходных составом и свойствами и при этом не происходит изменения состава ядер атомов называются химическими . Окисление железа, горение, получение металлов из руд ­ – все это химические явления.

Следует различать химические и физические явления.

При физических явлениях изменяется форма или физическое состояние вещества или образуются новые вещества за счет изменения состава ядер атомов . Например, при взаимодействии газообразного аммиакам с жидким азотом, аммиак переходит вначале в жидкое, а затем в твердое состояние. Это не химическое, а физическое явление, т.к. состав вещества не меняется. Некоторые явления, приводящие к образованию. Новых веществ относятся к физическим. Таковы например, ядерные реакции в результате которых из ядер одних элементов образуются атомы других.

Физические явления, т.к. и химические широко распространены: протекание электрического тока по металлическому проводнику, ковка и плаваление металла, выделение теплоты, превращение воды в лед или пар. И т.д.

Химические явления всегда сопровождаются физическими. Например, при сгорании магния выделяется теплота и свет, в гальваническом элементе в результате химической реакции возникает электрический ток.

В соответствии с атомно-молекулярным учением и законом сохранения массы вещества из атомов вступивших в реакцию веществ, образуются новые вещества как простые так и сложные, причем общее число атомов каждого элемента всегда остается постоянным.

Химические явления возникают благодаря протеканию химических реакций.

Химические реакции классифицируют по различным признакам.

1.По признаку выделения или поглощения теплоты. Реакции, протекающие с выделением теплоты называются экзотермическими. Например, реакция образования хлористого водорода из водорода и хлора:

Н 2 +СI 2 =2HCI+184,6 кДж

Реакции, протекающие с поглощением теплоты из окружающей среды, называются эндотермическими. Например, реакция образования оксида азота (II) из азота и кислорода, которая протекает при высокой температуре:

N 2 +O 2 =2NO – 180,8кДж

Количество, выделенной или поглощенной в результате реакции теплоты называют тепловым эффектом реакции. Раздел химии, изучающий тепловые эффекты химических реакций называется термохимией. Об этом мы подробно поговорим при изучении раздела «Энергетика химических реакций».

2. По признаку изменения числа исходных и конечных веществ реакции подразделяют на следующие типы: соединения, разложения и обмена .

Реакции в результате которых из двух или нескольких веществ образуется одно новое вещество называются реакциями соединения :

Например, взаимодействие хлористого водорода с аммиаком:

HCI + NH 3 = NH 4 CI

Или горение магния:

2Mg + O2 = 2MgO

Реакции в результате которых из одного вещества образуется несколько новых веществ называются реакциями разложения .

Например реакция разложения иодида водорода

2HI = H 2 + I 2

Или разложение перманганата калия:

2KmnO 4 = K2mnO 4 + mnO 2 + O 2

Реакции между простыми и сложными веществами, в результате которых атомы простого вещества замещают атомы одного из элементов сложного вещества называются реакциями замещения.

Например, замещение свинца цинком в нитрате свинца (II):

Pb(NO 3) 2 + Zn =Zn(NO 3) 2 + Pb

Или вытеснение брома хлором:

2NaBr + CI 2 = 2NaCI + Br 2

Реакции в результате которых два вещества обмениваются своими составными частями, образуя два новых вещества называются реакциями обмена . Например, взаимодействие оксида алюминия с серной кислотой:

AI2O3 + 3H3SO4 = AI2(SO4)3 + 3H3O

Или взаимодействие хлорида кальция с нитратом серебра:

CaCI 2 + AgNO 3 = Ca(NO 3) 2 + AgCI

3. По признаку обратимости реакции делятся на обратимые и необратимые.

4.По признаку изменения степени окисления атомов, входящих в состав реагирующих веществ, различают реакции протекающие без изменения степени окисления атомов и окислительно-восстановительные (с изменением степени окисления атомов).

Окислительно-восстновительные реакции. Важнейшие окислители и восстановители. Методы подбора коэффициентов в реакциях

окисления-восстановления

Все химические реакции можно разделить на два типа. К первому типу относятся реакции протекающие без изменения степеней окисления атомов, входящих в состав реагирующих веществ.

Например

HNO 3 + NaOH = NaNO 3 + H3O

BaCI 2 + K 2 SO4 = BaSO 4 + 2KCI

Ко второму типу относятся химические реакции, протекающие с изменением степеней окисления всех или некоторых элементов:

2KCIO 3 = 2KICI+3O2

2KBr+CI2=Br 2 +2KCI

Здесь в первой реакции атомы хлора и кислорода меняют степень окисления, а во второй атомы брома и хлора.

Реакции, протекающие с изменением степени окисления атомов входящих в состав реагирующих веществ называются окислительно-восстановительными.

Изменение степени окисления связано с оттягиванием или перемещением электронов.

Основные положения теории окислительно-восстановительных

реакций:

1.Окислением называется процесс отдачи электронов атомом, молекулой или ионом.

AI - 3e – = AI 3+ H 2 - 2e – = 2H +

2.Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом.

S + 2e – = S 2- CI 2 +2e – = 2CI -

3.Атомы, молекулы или ионы отдающие электроны называются восстановителями. Во время реакции они окисляются

4.Атомы, молекулы или ионы присоединяющие электроны называются окислителями. Во время реакции они восстанавливаются.

Окисление всегда сопровождается восстановлением и наоборот восстановление всегда связано с окислением, что можно выразить уравнением:

Восстановитель – e – = Окислитель

Окислитель + e – = Восстановитель

Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов окисления и восстановления.

Число электронов отдаваемых восстановителем всегда равно числу электронов, присоединяемых окислителем.

Восстановители и окислители могут быть как простыми веществами, т.е. состоящими из одного элемента или сложными. Типичными восстановителями являются атомы на внешнем энергетическом уровне которых имеются от одного до трех электронов. К этой группе относятся металлы. Восстановительные свойства могут проявлять и неметаллы, например водород, углерод, бор и др.

В химических реакциях они отдают электроны по схеме:

Э – ne – = Э n+

В периодах с повышением порядкового номера элемента восстановительные свойства простых веществ понижаются а окислительные возрастают и становятся максимальными у галогенов. Например, в третьем периоде натрий самый активный восстановитель, а хлор – окислитель.

У элементов главных подгрупп усиливаются восстановительные свойства с повышением порядкового номера и ослабевают окислительные. Элементы главных подгрупп 4 - 7 групп (неметаллы) могут как отдавать, так и принимать электроны, т.е. проявлять восстановительные и окислительные свойства. Исключение – фтор, который проявляет только окислительные свойства, т.к. обладает наибольшей электроотрицательностью. Элементы побочных подгрупп имеют металлический характер, т.к. на внешнем уровне их атомов содержится 1-2 электрона. Поэтому их простые вещества являются восстановителями.

Окислительные или восстановительные свойства сложных веществ зависят от степени окисления атома данного элемента.

Например, KMnO 4 , MnO 2 , MnSO 4 ,

В первом соединении марганец имеет максимальную степень окисления и не может больше ее повышать, следовательно он может быть только окислителем.

В третьем соединении у марганца минимальная степень окисления, он может быть только восстановителем.

Важнейшие восстановители : металлы, водород, уголь, монооксид углерода, сероводород, хлорид двухвалентного олова, азотистая кислота, альдегиды, спирты, глюкоза, муравьиная и щавелевая кислоты, соляная кислота, катод при элетролизе.

Важнейшие окислители : галогены, перманганат калия, бихромат каля, кислород, озон, пероксид водорода, азотная, серная, селеновая кислоты, гипохлориты, перхлораты, хлораты, црская водка, смесь концентрированных азотной и плавиковой кислот, анод при электролизе.

Составление уравнений окислительно-восстановительных реакций

1.Метод электронного баланса. В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом число электронов отданных восстановителем равно числу электронов присоединенных окислителем. Для составления уравнения необходимо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо на основе известных свойств элементов либо опытным путем.

Медь, образуя ион меди отдает два электрона., ее степень окисления возрастает от 0 до +2. Ион палладия присоединяя два электрона изменяет степень окисления от +2 до 0. Следовательно нитрат палладия – окислитель.

Если установлены как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют свою степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

Сu 0 -2e - = Сu 2+ 1

Pd +2 +2e - =Pd 0 1

Из приведенных электронных уравнений видно, что при восстановителе и окислителе коэффициенты равны 1.

Окончательное уравнение реакции:

Cu + Pd(NO 3) 2 = Cu(NO 3) 2 + Pd

Для проверки правильности составленного уравнения подсчитываем число атомов в правой и левой части уравнения. Последним проверяем по кислороду.

восстановительной реакции, идущей по схеме:

KМnO 4 + H 3 PO 3 + H 2 SO 4 → MnSO 4 + H 3 PO 4 + K 2 SO 4 + H 2 O

Решение Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют свою степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

восстановитель 5 │ Р 3+ - 2ē ═ Р 5+ процесс окисления

окислитель 2 │Mn +7 + 5 ē ═ Mn 2+ процесс восстановления

Общее число электронов, отданных восстановлением, должно быть равно числу электронов, которое присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления. Коэффициенты перед веществами, атомы которых не меняют свою степень окисления, находят подбором. Уравнение реакции будет иметь вид

2KМnO 4 + 5H 3 PO 3 + 3H 2 SO 4 ═ 2MnSO 4 + 5H 3 PO 4 + K 2 SO 4 + 3H 2 O.

Метод полуреакций или ионно-электронный метод . Как показывает само название этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления.

При пропускании сероводорода через подкисленный раствор перманганата калия малиновая окраска исчезает и раствор мутнеет.

Опыт показывает, что помутнение раствора происходит в результате образования серы:

Н 2 S  S + 2H +

Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части отнять два электрона после чего можно стрелку заменить на знак равенства

Н 2 S – 2е – = S + 2H +

Это первая полуреакция – процесс окисления восстановителя сероводорода.

Обесцвечивание раствора связано с переходом MnO 4 - (малиновая окраска) в Mn 2+ (слабо розовая окраска). Это можно выразить схемой

MnO 4 – Mn 2+

В кислом растворе кислород, входящий в состав MnO 4 - вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так

MnO 4 – +8Н + Mn 2+ + 4Н 2 О

Чтобы стрелку заменить на знак равенства надо уравнять и заряды. Поскольку исходные вещества имеют семь положительных зарядов, то а конечные два положительных заряда, то для выполнения условий равенства надо к левой части схемы прибавить пять электронов

MnO 4 – +8Н + +5е – Mn 2+ + 4Н 2 О

Это полуреакция – процесс восстановления окислителя, т.е. перманганат-иона.

Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно, уравняв числа отданных и полученных электронов. В этом случае по правилу нахождения наименьшего кратного определяют соответствующие множители на которые умножают уравнения пол

Н 2 S – 2е – = S + 2H + 5

MnO 4 – +8Н + +5е – Mn 2+ + 4Н 2 О 2

5Н 2 S +2MnO 4 – +16Н + = 5S+10H + + 2Mn 2+ + 8Н 2 О

После сокращения на 10H + получаем

5Н 2 S +2MnO 4 – +6Н + = 5S + 2Mn 2+ + 8Н 2 О или в молекулярной форме

2к + + 3SO 4 2- = 2к + + 3SO 4 2-

5Н 2 S +2KMnO 4 +3Н 2 SO 4 = 5S + 2MnSO 4 + K 2 SO 4 +8Н 2 О

Сопоставим оба метода. Достоинство метод полуреакций по сравнению с методом электронного баланса заключается в том, что в нем применяются не гипотетические ионы, а реально существующие. В самом деле в растворе нет ионов Mn +7 , Cr +6 , S +6 , S +4 ; MnO 4– , Cr 2 O 7 2– , CrO 4 2– , SO 4 2– . При методе полуреакций не нужно знать все образующиеся вещества; они появляются в уравнении реакции при выводе его.

Классификация окислительно-восстановительных реакций

Обычно различают три типа окислительно-восстановительных реакций: межмолекулярные, внутримолекулярные и реакции диспропорционирования .

К межмолекулярным относятся реакции в которых окислитель и восстановитель находятся в разных веществах. Сюда же относят и и реакции между разными веществами в которых атомы одного и того же элемента имеют разные степени окисления:

2H 2 S + H 2 SO 3 = 3S + 3H 2 O

5HCI + HCIO 3 = 5CI 2 + 3H 2 O

К внутримолекулярным относятся такие реакции, в которых окислитель и восстановитель находятся в одном и том же веществе. В этом случае атом с более положительной степенью окисления окисляет атом с меньшей степенью окисления. Такими реакциями являются реакции химического разложения. Например:

2NaNO 3 = 2NaNO 2 + O 2

2KCIO 3 = 2KCI + 3O 2

Сюда же относят и разложение веществ в которых атомы одного и того же элемента имеют разные степени окисления:

NH 4 NO 3 = N 2 O + 2H 2 O

Протекание реакций диспропорционирования сопровождается одновременным увеличением и уменьшением степени окисления атомов одного и того же элемента. При этом исходное вещество образует соединения, одно из которых содержит атомы с более высокой, а другое с более низкой степенью окисления. Эти реакции возможны для веществ с промежуточной степенью окисления. Примером может служить превращение манганата калия в котором марганец имеет промежуточную степень окисления +6 (от +7 до +4). Раствор этой соли имеет красивый темно-зеленый цвет (цвет иона МnO 4 химических Химический эксперимент по неорганической химии в системе проблемного обученияДипломная работа >> Химия

Задач» 27. Классификация химических реакций . Реакции , которые идут без изменения состава. 28. Классификация химических реакций , которые идут...


Во время химических реакций из одних веществ получаются другие (не путать с ядерными реакциями, в которых один химический элемент превращается в другой).

Любая химическая реакция описывается химическим уравнением :

Реагенты → Продукты реакции

Стрелка указывает направление протекания реакции.

Например:

В данной реакции метан (СН 4) реагирует с кислородом (О 2), в результате чего образуется диоксид углерода (СО 2) и вода (Н 2 О), а точнее - водяной пар. Именно такая реакция происходит на вашей кухне, когда вы поджигаете газовую конфорку. Читать уравнение следует так: одна молекула газообразного метана вступает в реакцию с двумя молекулами газообразного кислорода, в результате получается одна молекула диоксида углерода и две молекулы воды (водяного пара).

Числа, расположенные перед компонентами химической реакции, называются коэффициентами реакции .

Химические реакции бывают эндотермическими (с поглощением энергии) и экзотермические (с выделением энергии). Горение метана - типичный пример экзотермической реакции.

Существует несколько видов химических реакций. Самые распространенные:

  • реакции соединения;
  • реакции разложения;
  • реакции одинарного замещения;
  • реакции двойного замещения;
  • реакции окисления;
  • окислительно-восстановительные реакции.

Реакции соединения

В реакциях соединения хотя бы два элемента образуют один продукт:

2Na (т) + Cl 2 (г) → 2NaCl (т) - образование поваренной соли.

Следует обратить внимание на существенный нюанс реакций соединения: в зависимости от условий протекания реакции или пропорций реагентов, вступающих в реакцию, - ее результатом могут быть разные продукты. Например, при нормальных условиях сгорания каменного угля получается углекислый газ:
C (т) + O 2 (г) → CO 2 (г)

Если же количество кислорода недостаточно, то образуется смертельно опасный угарный газ:
2C (т) + O 2 (г) → 2CO (г)

Реакции разложения

Эти реакции являются, как бы, противоположными по сути, реакциям соединения. В результате реакции разложения вещество распадается на два (3, 4...) более простых элемента (соединения):

  • 2H 2 O (ж) → 2H 2 (г) + O 2 (г) - разложение воды
  • 2H 2 O 2 (ж) → 2H 2 (г) O + O 2 (г) - разложение перекиси водорда

Реакции одинарного замещения

В результате реакций одинарного замещения, более активный элемент замещает в соединении менее активный:

Zn (т) + CuSO 4 (р-р) → ZnSO 4 (р-р) + Cu (т)

Цинк в растворе сульфата меди вытесняет менее активную медь, в результате чего образуется раствор сульфата цинка.

Степень активности металлов по возрастанию активности:

  • Наиболее активными являются щелочные и щелочноземельные металлы

Ионное уравнение вышеприведенной реакции будет иметь вид:

Zn (т) + Cu 2+ + SO 4 2- → Zn 2+ + SO 4 2- + Cu (т)

Ионная связь CuSO 4 при растворении в воде распадается на катион меди (заряд 2+) и анион сульфата (заряд 2-). В результате реакции замещения образуется катион цинка (который имеет такой же заряд, как и катион меди: 2-). Обратите внимание, что анион сульфата присутствует в обеих частях уравнения, т.е., по всем правилам математики его можно сократить. В итоге получится ионно-молекулярное уравнение:

Zn (т) + Cu 2+ → Zn 2+ + Cu (т)

Реакции двойного замещения

В реакциях двойного замещения происходит замещение уже двух электронов. Такие реакции еще называют реакциями обмена . Такие реакции проходят в растворе с образованием:

  • нерастворимого твердого вещества (реакции осаждения);
  • воды (реакции нейтрализации).

Реакции осаждения

При смешивании раствора нитрата серебра (соль) с раствором хлорида натрия образуется хлорид серебра:

Молекулярное уравнение: KCl (р-р) + AgNO 3 (p-p) → AgCl (т) + KNO 3 (p-p)

Ионное уравнение: K + + Cl - + Ag + + NO 3 - → AgCl (т) + K + + NO 3 -

Молекулярно-ионное уравнение: Cl - + Ag + → AgCl (т)

Если соединение растворимое, оно будет находиться в растворе в ионном виде. Если соединение нерастворимое, оно будет осаждаться, образовывая твердое вещество.

Реакции нейтрализации

Это реакции взаимодействия кислот и оснований, в результате которых образуются молекулы воды.

Например, реакция смешивания раствора серной кислоты и раствора гидроксида натрия (щелока):

Молекулярное уравнение: H 2 SO 4 (p-p) + 2NaOH (p-p) → Na 2 SO 4 (p-p) + 2H 2 O (ж)

Ионное уравнение: 2H + + SO 4 2- + 2Na + + 2OH - → 2Na + + SO 4 2- + 2H 2 O (ж)

Молекулярно-ионное уравнение:2H + + 2OH - → 2H 2 O (ж) или H + + OH - → H 2 O (ж)

Реакции окисления

Это реакции взаимодействия веществ с газообразным кислородом, находящимся в воздухе, при которых, как правило, выделяется большое количество энергии в виде тепла и света. Типичная реакция окисления - это горение. В самом начале данной страницы приведена реакция взаимодействия метана с кислородом:

CH 4 (г) + 2O 2 (г) → CO 2 (г) + 2H 2 O (г)

Метан относится к углеводородам (соединения из углерода и водорода). При реакции углеводорода с кислородом выделяется много тепловой энергии.

Окислительно-восстановительные реакции

Это реакции при которых происходит обмен электронами между атомами реагентов. Рассмотренные выше реакции, также являются окислительно-восстановительными реакциями:

  • 2Na + Cl 2 → 2NaCl - реакция соединения
  • CH 4 + 2O 2 → CO 2 + 2H 2 O - реакция окисления
  • Zn + CuSO 4 → ZnSO 4 + Cu - реакция одинарного замещения

Максимально подробно окислительно-восстановительные реакции с большим количеством примеров решения уравнений методом электронного баланса и методом полуреакций описаны в разделе

Реакция, идущая без изменения состава вещества - в неорганической химии примерами таких химических реакций являются процессы изменения аллотропных модификаций одного и того же химического элемента (графит переходит в алмаз, кислород в озон).

В органической химии примерами будут реакции изомеризации алканов, алкенов, алкинов и другие, идущие без изменения не только качественного, но и количественного состава реагентов.

Аллотропия - существование двух и более простых веществодного и того же химического элемента, различных по строению и свойствам - так называемых аллотропных (или аллотропических) модификаций или форм.

В настоящее время известно более 400 разновидностей простых веществ. Способность элемента к образованию аллотропных форм обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов.

Причиной аллотропии являются, например, разное число атомов в молекуле, как у кислорода О2 и озона О3.Или разное строение кристаллической решетки, как у алмаза и графита. И у того и другого она атомная, но упаковка в них атомов углерода определяется его гибридизацией. Ни один элемент Периодической системы Менделеева не обладает тем разнообразием свойств, иногда прямо противоположных, которое присуще углероду. В карбине и фуллерене, между атомами углерода существуют двойные и тройные связи. Все это сказывается на физических и химических свойствах аллотропов. Графит, алмаз, карбин, лонсдейлит, фуллерены, углеродные нанотрубки, графен, аморфный углерод- все это аллотропия углерода, а у кислорода сам кислород и озон. Кислород бесцветен, не имеет запаха; озон имеет выраженный запах, имеет бледно-фиолетовый цвет, он более бактерициден. Каждый, кто обратил внимание на то, как пахнет воздух после грозы или вблизи источника электрического разряда, знает запах этого газа очень хорошо. В природе озон образуется не только при электрических разрядах в атмосфере, но и под действием ультрафиолетового излучения Солнца.

Известно 11 аллотропных модификацийфосфора. Основные модификации: белый, красный и чёрный фосфор. Белый фосфор ядовит, светится в темноте, способен самовоспламеняться, красный фосфор не ядовит, не светится в темноте, сам по себе не воспламеняется. Белый фосфор похож на воск, он мягкий и легкоплавкий, светится в темноте и вдобавок огнеопасен и ядовит. Чтобы избежать самовоспламенения белого фосфора, его хранят под слоем воды. Если нагревать белый фосфор до 300°С без доступа воздуха, он превратится в красный фосфор. Красный фосфор - порошок красно-фиолетового цвета, не ядовитый и совсем не светящийся. Под очень большим давлением получается чёрный фосфор, похожий по свойствам на металл.

У серы большое число аллотропных модификаций, второе место после углерода. Основные модификации: ромбическая, моноклинная и пластическая сера.

Реакции, идущие с изменением состава веществ. Классификация:

а.Реакции соединения:

Из нескольких веществ образуется одно сложное вещество (сопровождаются выделением тепла, всегда носят окислительно-восстановительный характер).

A + B + C = D

СаСО3 + СО2 + Н2О = Са (НСО3)2,

2FеСl2 + Сl2 = 2FеСl3.

б.Реакции разложения :

Из одного сложного вещества образуется несколько новых веществ.

А = В + С + D.

2KNO3 → 2KNO2 + O2

Из реакций разложения следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

CuSO4 5H2O=CuSO4 + 5H2O

Cu(OH)2=CuO + H2O

H2SiO3=SiO2 + H2O.

К реакциям разложения окислительно-восстановительного характера относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления:

4HNO3=2H2O + 4NO2O + O2O.

2AgNO3 = 2Ag + 2NO2 + O2,

(NH4)2Cr2O7 = Cr2O3 + N2 + 4H2O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты. Реакции разложения в органической химии носят название крекинга :

С18H38 = С9H18 + С9H20,

или дегидрирования:

C4H10 = C4H6 + 2H2.

в. Реакции замещения .

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe2O3 = 2Fе + Аl2О3,

Zn + 2НСl = ZnСl2 + Н2,

2КВr + Сl2 = 2КСl + Вr2,

2КСlO3 + l2 = 2KlO3 + Сl2.

СаСО3+ SiO2 = СаSiO3 + СО2,

Са3(РО4)2 + ЗSiO2 = ЗСаSiO3 + Р2О5,

Иногда эти реакции рассматривают как реакции обмена:

СН4 + Сl2 = СН3Сl + НСl.

г. Реакции обмена.

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями:

ZnO + Н2SО4 = ZnSО4 + Н2О,

AgNО3 + КВr = АgВr + КNО3,

СrСl3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена - реакции нейтрализации :

НСl + КОН = КСl + Н2О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО3 + НСl = NаСl + Н2О + СО2,

Са (НСО3)2 + Са (ОН) 2 = 2СаСО3↓ + 2Н2О,

СН3СООNа + Н3РО4 = СН3СООН + NаН2РО4.

По тепловому эффекту:

Реакции, протекающие с выделением тепла, называются экзотермическими реакциями.

С + О 2 → СО 2 + Q

Реакции, протекающие с поглощением тепла, называются эндотермическими реакциями .

N 2 + O 2 → 2NO – Q

По признаку обратимости:

-Обратимые – реакции, проходящие при одних и тех условиях в двух взаимопротивоположных направлениях.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми, при этом должен выделяться газ, осадок, или малодиссоциирующее вещество- вода.

BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl

Na 2 CO 3 +2HCl → 2NaCl + CO 2 + H 2 O

Окислительно-восстановительные реакции – реакции, протекающие с изменением степени окисления.

Са + 4HNO 3 → Ca(NO 3) 2 + 2NO 2 + 2H 2 O

И реакции, протекающие без изменения степени окисления.

HNO 3 + KOH → KNO 3 + H 2 O

Различают два процесса: Окисление – это отдача электронов, в результате степень окисления увеличивается. Атом молекула или ион, отдающий электрон называется восстановителем .

Mg 0 - 2e → Mg +2

Восстановление – процесс присоединения электронов, в результате степень окисления уменьшается. Атом молекула или ион, присоединяющий электрон называется окислителем . S 0 +2e → S -2

O 2 0 +4e → 2O -2

В окислительно–восстановительных реакциях должно соблюдаться правило электронного баланса (число присоединенных электронов должно быть равно числу отданных, свободных электронов быть не должно). А так же должен соблюдаться атомный баланс (число одноименных атомов в левой части должно быть равно числу атомов в правой части).

Контроль знаний: